Extensions 1→N→G→Q→1 with N=C23⋊F5 and Q=C2

Direct product G=N×Q with N=C23⋊F5 and Q=C2
dρLabelID
C2×C23⋊F580C2xC2^3:F5320,1134

Semidirect products G=N:Q with N=C23⋊F5 and Q=C2
extensionφ:Q→Out NdρLabelID
C23⋊F51C2 = C5⋊C2≀C4φ: C2/C1C2 ⊆ Out C23⋊F5408+C2^3:F5:1C2320,202
C23⋊F52C2 = C242F5φ: C2/C1C2 ⊆ Out C23⋊F5404C2^3:F5:2C2320,272
C23⋊F53C2 = (C2×D4)⋊7F5φ: C2/C1C2 ⊆ Out C23⋊F5408+C2^3:F5:3C2320,1108
C23⋊F54C2 = (C2×D4)⋊8F5φ: C2/C1C2 ⊆ Out C23⋊F5808-C2^3:F5:4C2320,1109
C23⋊F55C2 = C23⋊F55C2φ: trivial image804C2^3:F5:5C2320,1083

Non-split extensions G=N.Q with N=C23⋊F5 and Q=C2
extensionφ:Q→Out NdρLabelID
C23⋊F5.1C2 = C22⋊C4⋊F5φ: C2/C1C2 ⊆ Out C23⋊F5808-C2^3:F5.1C2320,203
C23⋊F5.2C2 = (C22×C4)⋊F5φ: C2/C1C2 ⊆ Out C23⋊F5804C2^3:F5.2C2320,254

׿
×
𝔽